如果能有几个完整的项目,估值上很容易再进一位数。
倘若真的插手政府项目,为海关,政府机构,交通站点内配备了这些技术,那就是王恺不敢想的天文数字了。
人脸识别项目是王恺心心念念的事情,在孟繁岐眼中,却是无足轻重,险些忘记的事情。
“能做的事情实在太多了,等谷歌这次推荐和广告算法更新之后,我得仔细规划记录一下了。”
此刻的孟繁岐正在更新自己谷歌学术的档案信息,此时距离他在西尼公开一大批论文时间不久,但距离公开生成式对抗算法的论文却已经有一些时间了。
他想看一看,自己这只蝴蝶,到底有没有引动什么很大的变化。
而最为方便的办法,就是看看到底有哪些论文引用了自己,看看有没有什么比较显著的研究成果。
更新了自己谷歌学术的档案之后,孟繁岐不由得惊讶,这才没几天自己已经有了二十多个论文引用数量了。
再仔细分辨一番,其实这二十多个引用量,竟然只来自于四五篇论文。
由于孟繁岐这一次的公布对整个范式的革命太过彻底,代码也开源,导致现在任何一个有关深度学习的研究,可能开局就要引用他好多篇文章。
残差,优化器,训练方法,数据增强,这四大金刚几乎谁也躲不开。
深度学习界每多一篇文章,孟繁岐的被引用次数几乎就会多四倍,并且这个倍数以后还会继续扩大。
截止2023年,人类历史上被引用次数最多的学者,总被引用次数将将百万之数。
而AI领域的文章数量,从12年的2万余篇每年,很快飞速增长到了21年的约万篇每年。
照这趋势下去,不用四五年时间,孟繁岐就会以25-26之年龄,成为历史上论文被引用次数最多的人。
并在之后的岁月当中,狠狠地继续成倍增长。
“截止到我重生前,残差网络的原作者kaiming被引用次数已经超过四十万。”孟繁岐稍稍回忆了一下,自己现在发表并计划发表的知名AI技术数倍于kaiming。
等到23年突破三百万都不是没有可能。
学术论文写的都赶上网络小说了,被引用数就相当于订阅,文章的实际被阅读次数还要数十倍于此。
能将学术论文写到这个热度,想来也是前无古人后无来者了。