陈舟继续看着罗尔中值定理的描述,以及证明过程。
这个,越看越头大,陈舟发现自己怎么什么都不懂,什么都不会,看到一个新的定理或者引理就是一个全新的知识。
果然十二年基础教育是真基础...
陈舟升起一股欲望,他强烈的想要搞懂这些定理知识。
他的求知欲被打开了,而不再是一味的为了高考而去学习。
此时,陈舟觉得这个隐藏任务似乎变得有趣了起来。
他不单单只关注任务提到的拉格朗日中值定理和柯西中值定理。
他开始从微分中值定理这个引起他极大兴趣的分支开始,从罗尔中值定理入手。
把证明过程,几何意义,几种特殊情况,全部了解了一遍。
对于其中提到的费马引理、极限存在定理,这些看不懂的,他先放在里一边,只单纯的看这个罗尔中值定理。
一下午的时间是肯定不够的,陈舟在草草解决了晚饭后,又开始继续沉迷。
为了不使这种求知欲断裂,陈舟拿出一罐新的精神药剂,一饮而尽。
像这样一口干,也只有在开学前,这个最适合的时间,他才敢这么干。
这可不是闹着玩的,修仙需要正确的姿势,正确的时间,正确的地点。
不得不说,在精神药剂这种强力上头的辅助之下,他一晚上从罗尔中值定理,到已经熟悉的拉格朗日中值定理,再到任务提到的唯二的柯西中值定理,再再到没听过的泰勒公式、达布定理、洛必达法则,他居然全刷了一遍。
有些是看懂了,学到了,有些是混个半知半解,再不济,混个脸熟。
陈舟也终于明白,为什么隐藏任务要把拉格朗日中值定理和柯西中值定理挑出来说了。
不仅仅是因为它们在高考中的应用性比较广,更重要的是拉格朗日中值定理是微分中值定理的核心,其他中值定理是拉格朗日中值定理的特殊情况和推广,它是微分学应用的桥梁,在理论和实际中具有极高的研究价值。
而拉格朗日中值定理也正是柯西中值定理的特殊情形。
直到早上天亮,陈舟被陈建国喊出去吃早饭,他才从知识大洋里短暂脱离。
陈建国看着他两个深沉的眼袋,有些疑惑:“小舟,你昨晚没睡好?”