华罗庚先生是华人中最早从事《哥德巴赫猜想》的数学家。
1936~1938年,华罗庚赴英留学,师从哈代研究数论,并开始研究哥德巴赫猜想,验证了对于几乎所有的偶数猜想。
1956年,华罗庚的弟子之一王元证明了“3+4”,后来还证明了“3+3”和“2+3”。
1962年,华国潘承洞和苏联的巴尔巴恩证明了“1+5”,王元再度证明了“1+4”。
1966年,华国陈景润完成接近终点的“1+2”论证。
多位华人,几十年如一日,都匍匐在《哥猜》上,劳心费力。尤其是陈景润先生,连走路都在解题,其事迹经报道后,影响了两代人。80、90年代,陈景润已达“天下谁人不识君”的地位。
他的事迹,又让《哥猜》这个数学难题,在华国家喻户晓。
这次若马由成功攻克《哥猜》,将完成华人在此难题上的最后一步,一具有承上启下逻辑关系。他选择此题也有此考虑。
确定解题方向后,马由转为专注学习数论知识。集中拜读了自华罗庚起各位华人数学家在这个领域的所有著作,以及世界上其他著名数学家的相关著作。如华罗庚《数论导引》、卡拉楚巴《解析数论基础》、特伦鲍姆《解析与概率数论导引》、闵嗣鹤《数论的方法》、gtm195、gtm164、165、gtm206等系列。
仅通过阅读书籍,信息量还是欠缺,马由就通过互联网,查阅了许多国际数学家有关数论方面的论文,试图从中找到一些启发和解析经验。
大量阅读后,他感受到数学家已经发现了一些可以用初等数论的语言描述,但无法利用初等数论方法解决的问题,这说明了初等数论的体系是不完备的,如果《哥猜》在某个完备的数学分支下有等价的描述,那么《哥猜》也一定能够被解决了。
《哥猜》虽然是一个初等数论问题,但并不表示它有初等的证明。
他放弃了传统解析及论证方式。在科技树解锁前,若还是按传统数学家的方式,将耗费他巨大的精力和时间。这将是得不偿失的举动。他学习数学但却不会沉湎在这个狭窄的领域,更不会专职成为数学家。他的未来还是高科技领域。
现解析难题仅是让天才之名名副其实的一个小举动而已。